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Abstract  

In this paper,  a non-local field (i.e. the  (x, ~0)-field) is const ructed by  regarding the  spinor 
(¢) as the internal freedom attached to each point (x). Since this field is likened to a uni- 
fied field between the (x)- and (~)-fields, the metric is given by da~ =g~ dxh~. Concern- 
ing this, some conformaUy equivalent relations are considered. Next, Weyl's gauge field is 
introduced into the concept of connection in order to consider the gauge invariance. 
FinaUy, some essential features underlying our nonqocal field are grasped by formulating 
some fundamental equations of the spin curvature tensors, 

1. In~oduc~on  

In this paper, we shall try to 'non.localise' our base field (i.e. the (x).field) 
by attaching some internal structure to each point (x) = (x~; K = 1, 2, 3, 4) of  
the field. However, we shall here adopt the (four-component)  spinor (~)  as the 
internal freedom. Then, our non-local field, which will be called the (x, ~)- 
field in the following, presents an aspect of  a kind of  unified field or inter- 
action field between the (x)- and (¢)-fields, the former is nothing more than a 
four-dimensional space-time manifold, whilst the latter is a physical field con- 
stituted by spinors. Or, more characteristically, the (x)- and (~)-fields might 
be likened to the gravitational field governed by general relativity and the 
spinor field governed by quantum mechanics respectively. This way of  thinking 
descends from the ordinary unified field theory, and, as will be shown in the 
next section, our field theory is closely related to 'Wave Geometry '  advanced by 
Mimura (1935). 

Now, as is well known, the so-called non-local field theory was proposed by 
Yukawa (1950) for the purpose of  resolving the divergence difficulty and find- 
ing the unified description of elementary particles. And we can say from the 
standpoint of  geometrical theory of physical fields (Ikeda, 1972, 1973) that its 
essential way of thinking is to extend the point model of elementary particles 
to the non-point model. In other words, this means that  the point (x) in the 
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space-time manifold transforms to a certain internal structure, by which the 
(x)-field is 'non-localised'. We shall here adopt the spinor (4) as the internal 
degree of freedom in order to emphasise the non-vectorial property of it, as 
mentioned above. By the way, in the ordinary non-local field theory, a certain 
kind of directional vector is taken as the internal freedom, so that this is con- 
sidered geometrically by Finsler geometry, as pointed out by Takano (1968). 

In our non.local field, since the metric should embody the interaction of 
the (x)- and (~)-fields, it should be given by 

dat~ = g~ d x ~  (1.1) 

where do = gx dxX plays the role of linear operator and gx represents the 
matrix-metric, which is assumed to contain the Dirac matrix 7x. We shall 
therefore consider in Section 2 some conformally equivalent relations associ- 
ated with this metric and also pay attention to some relationship between our 
theory and wave geometry at the stage of metric. 

In Section 3 we shall proceed to the concept of  connection. We shall then 
apply Weyl's way of thinking (Weyl, 1918b) to our theory and introduce the 
gauge field in Weyl's style into the (x, ~)-field. Concerning this gauge field, in 
Section 4 we shall attach importance to the pole which it plays at the stage of 
connection and also touch upon some essential features underlying this field 
by formulating some fundamental equations of the spin curvature tensors. 

2. Con fOrmal Equivalence Associated with the Metric 

First, we shall consider the metric in the (x)-field. Since this field is the 
ordinary four-dimensional space.time manifold chosen as our base field, it is 
apposite that the metric in this field is given by 

ds z = 7xK dx K dxX (t~,k = 1, 2, 3, 4) (2.1) 

where ds means the distance between two neighbouring points (x) and (x + dx) 
and 7xK the metric tensor, the latter being stipulated by the Dirac matrix q'x as 
follows: 

7xK = 7(xTK) = (TxTK + 7KTx)/2 (2.2) 

Next, we shall proceed to the metric in tile (x, qJ).field. As already empha- 
sised, our non-local field should be regarded as a kind of interaction field 
between the (x)- and (~)-fields, so it is desirable that the metric in this field 
embodies the interaction. Then, against (2.1), we shall define the metric in the 
form 

(dw z =) da~ = gx dxX¢ (2.3) 

where dc~ = means the interaction coping with ds 2 and do =- gx dxX the linear- 
ised arc length coping with ds =-7x dxX, the latter being regarded as a linear 
operator operating on the state function ~ from a quantum mechanical point 
of view. Here, differentiating da with respect to the proper time r and sup- 
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posing that the eigenvatue ofde/dT is the velocity of light c, we have the 
following equation: 

(gxvX¢ =)gXvx~k = e~ (2.4) 

where v x = dxX/dr denotes the four-velocity. Then, adopting the natural units 
and replacing v x by the operator [(1/mi)Vx], we obtain, after some manipu- 
lation, a generalised Dirac equation (for an electron) as follows (Yukawa et aL, 
1972): 

[igXV x + m] ~ = 0 (2.5) 

where m denotes the mass of an electron and Vx the covariant derivative 
operator in the (x, ~)-fietd, as defned in Section 4 (cf. (4.3)). This equation 
should also be regarded as a fundamental equation of the first order in the 
(x, ~).field (Ikeda, 1973; Takano, t968). 

The field theory, the metric of which is given by such a formula as (2.3), 
has been known as 'Wave Geometry' (Mimura, 1935; Mimura & Takeno, 1962; 
Mimura et aL, 1967). However, the metric of wave geometry is chosen as 

ds$ = "Yx dxX42 (2.6) 

Therefore, in order to consider the relationship between (2.3) and (2.6), we 
shall here introduce the matrix k ~. This can serve geometrically as the mapping 
operator between the (x)- and ($)-fields and can physically represent the inter- 
action between them (Ikeda, t972), g~, and ")'x are then combined with each 
other as follows: 

g~, = X~TxK = ATx (2.7) 

where we have put A = XKTK. This equation shows that there exists a con- 
formally equivalent relation between gx and 7x through a scalar function A. 
At the same time we can obtain the conformally equivalent relations do = Ads 
and da$ = A ds$. Furthermore, if we put gk~¢ = gQ, gK), we have 

gxK = A27x~ (2.8) 

3. On Weyl's Gauge Field 

First, we shall introduce the gauge (i.e. Eichung) in Weyl's style, in order to 
tie the conformal equivalence to Weyl's gauge invariance (Bregman, 1973; 
Utiyama, 1973; Weyl, 1918b). The Eichung L (x) is nothing but the quadratic 
ground form determined at each point (x), which, in our case, is given by 

L(x) = (g~X~) .  ( g ~  ~) (3.1) 

where ~ denotes an arbitrary vector annexed to the point (x) and the dot 
means the ordinary inner product in the tensor and spinor analyses. By virtue 
of (2.7) and (2.8) we can rewrite (3.i)  as 

L(x) = p (gxK~K~ x) = pA2 (')'~,~ ~ ~ ~) (3.2) 
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where we have put p = ~ .  ~. Equation (3.2) shows that the Eichung L(x) is 
conformally equivalent to both (gxK}K} x) and (TXK}K}X). 

Next, we shall consider the gauge field and gauge invariance (i.e. Eichin- 
varianz). The essential point, in Weyl's way of thinking, is closely related to 
his 'Infinitesimalgeometfie' (Weyl, 1918a), which is grasped by the infinitesimal 
parallel displacement of the Eichung L(x). Namely, according to Weyl 1918a, 
1918b), the change (alL) of L(x) due to the infinitesimal parallel displacement 
of the vector }(x) from the point (x) to its neighbouring point (x + dx) is 
assumed to be given by 

dL = - ( d p ) L  (3.3) 

where the differential form dp is given by 

dp = Pu dxu (3.4) 

This Pu constitutes the gauge field in Weyl's style, but in our case this may 
mean a general material field instead of the electromagnetic potential. At this 
time, the change (d~) of ~ due to this parallel displacement is assumed to be 
given by 

d~ ~ = - r ~ x ~  x dx  u (3.5) 

where P~x denotes the coefficient of connection in the (x, ~)-field. Substitut- 
ing (3.2) into (3.3) and taking account of (3.4) and (3.5), we then obtain the 
following relation: 

(~u + Pu + au tog P)gxK = F~xguK + P~Kgxv (3.6) 

Also, under the assumption Plx = F~,u, we can determine Fix uniquely as 
follows: 

F ix  = + (~xK(pu +bulogp)+Su~(.px +i)x logp) 
uX 

- gKVgux(.Pv + Bu log p)}/2 (3.7) 

where {fin} denotes the Christoffel three-index symbol of the second kind 
derived from gxK (Schouten, 1954), i.e. 

/~k = gKV(Sugxu + ~xgv, - ~vgux)/2 (3.8) 

Equation (3.6) shows that at the stage of connection, the 'protrusion' of our 
non-local field from Riemann space is caused by (Ou + 3u log p). 

By the way, Weyl's original Eichung (Weyl, 1918b) is given by 

l = 7x~K~ x (3.9) 

which appears in (3.2). And Weyl's Eichinvarianz is expressed in the form 

dl= - (d¢)l (3.10) 
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where d ¢  is prescribed by, as in (3.4), 

dc~ = •u dxu  (3.11) 

where ¢u means the electromagnetic potential. Fortunately, in our case, we 
can obtain from (3.2) 

L = (pAZ)l (3.12) 

Substituting this into (3.3) and taking account of (3.4), (3.10) and (3.11), we 
get the following relation: 

Pu = Su - ~u log p - ~ log A 2 (3.13) 

Thus, we can say that equation (3.12) gives the gauge transformation between 
L and I at the stage of Eichung, and that (3.13) gives the gauge transformation 
between pu and q~ under the requirement of Eichinvarianz. 

4. S o m e  Fundamen ta l  Features  Underlying the Non-Local  Field 

In this section we shall consider some essential features of the (x, ~)-field 
by formulating some fundamental equations of the spin curvature tensors. For 
this purpose we shall at first define the covariant derivative operator (Vu) 
which can preserve the gauge invariance. Hereupon, we can regard (3.6) as the 
covafiant derivative ofgxK and can rewrite it in the form 

I) v V u g ; ~  = D u g ~  - I'u~gvK -- I 'u~gxv = 0 (4.1) 

where we have put D u = 3 u + #u + Ou log p. We can thus define the covariant 
derivatives ofgx and ~, respectively, as follows: 

V u g x  = D u g x  - P~xgv - Pugx  + gxI'u (~- 0) (4.2) 

and 

Vu~ = D u e  - leu¢ (4.3) 

where Eu denotes the spin affine connection in the (x, ~b)-field (Takano, 1968). 
This covariant derivative operator (Vu) has already been used in such an 
equation as (2.5). 

On the other hand, we can determine I~u fi'om (4.2) as follows: 

F u = A u x K S X ~ / 4  + auI  (4.4) 

where we have put 

AV~xgv = I 'ug x - gx P u (4.5) 

s x K  = g[ XgK ] = (gXg~ _ gKgX)/2 (4.6) 

and a u = tr(Pu)/4, and I denotes the unit matrix (Bregman, 1973; Takano, 
1968). In this case, Aux ~ constitutes the spin gauge field (Bregman, 1973) and 
a u represents an arbitrariness associated with I'u, the latter has been interpreted 
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as the electromagnetic potential (~bu) in Weyl's style in the ordinary spinor 
analysis (Bade & Jehle, 1953; Infeld & van der Waerden, 1933). But in our 
case, this arbitrariness is compensated by our gauge field (pu), as will be con- 
sidered in the following. 

For this purpose we must take notice of the arbitrariness associated with 
the spin curvature tensor (Pvv) (cf. (4.15)), but first we must consider some 
fundamental equations of the spin curvature tensors. The latter are then 
defined through the following relation: 

where we have put 

and 

2V[vVM ~o = (P~u + Fvu) 

P~'u = 2(D[uP~I + P[vFu]) 

(4.7) 

(4.8) 

Fvu = 2D[vDul (4.9) 

In this case Pvu gives the ordinary spin curvature tensor (Takano, 1968), while 
Fvu represents the curvature tensor derived essentially from the gauge field, 
which might be regarded as a generalised form of the fundamental tensor in 
the electromagnetic field, i.e. fvu = 2 O[v~bul. On the other hand, the other two 
curvature tensors are also introduced through the following relation: 

2VlvVulgx = R'v)d~gK + Qv}dfftg~ + Fvugx (= 0) (4.10) 

where we have put 

Rvua = 2(D[uPvla + PDIxt Pul~ + P[vtxlAul~) (4.11) 

and 
K + . ~  A ~  L ~ ~ ( 4 . 1 2 )  Qb}i~. = 2(D[uAvlx  a[vlxt~ul~ +A[vlxtPu] ) 

In this case, Rb}i~ means the Riemann-Christoffel curvature tensor derived 
from P~x (Schouten, 1954) and Q;,}/~, the spin curvature tensor derived from 
A~,x, the latter is related to P~u as follows: 

Qb'~'~,g~ = Pvugx - gxPvu (4.13) 

Now, since the equation (4.10) becomes zero identically in our case, we can 
obtain the following fundamental equation of the spin curvature tensors: 

R.. .K_ _ ,~...K + Fuvg x uu~,g~ - ~guv~.gK 
(4.14) 

= Puvgx - gxPtav + Fuvgx 

where we have used (4.13). Therefore, we can, as in the same way as (4.4), 
determine the spin curvature tensor Puv as follows: 

Puv = Rvuxg SxK/4 - D[uDv] + bud[ (4.15) 

where buy = tr(Puv)/4 represents the arbitrariness. However, by virtue of (4.4), 
we can get buy = D[vau]. Therefore, if we can choose the gauge field (Pu) so 
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that the relation D u = a u may hold good, we can compensate two kinds of  
arbitrariness appearing in (4.4) and (4.15) by our gauge field, as mentioned 
before. 

By the way, owing to the Bianchi identity (Schouten, 1954), we can get the 
following fundamental equation of  the gauge field: 

V~Fx~ + VxF~ .  + VKF.x = 0 (4.16) 

which should be regarded as a generalised form of  Maxwell equation, as is 
emphasised by Bregman (1973) and Utiyama (t973).  

5. Conclusion 

In this paper we have considered physico-geometrically our non-local field, 
i.e. the (x, ~O)-field, by attaching weight to the non-vectorial property of  the 
spinor (if). And we have also made clear some essential features underlying the 
concepts of  metric and connection by introducing Weyl's gauge field and gauge 
invariance. 

It might be said that our gauge field is more general than Weyl's and that it 
plays a role o f  a general material field instead of  the electromagnetic potential. 
Therefore in future we should take note of  the fundamental equations of  the 
spin curvature tensors and should investigate the physical meaning of  our 
gauge field in more detail. 

As to the field theory, it is found that our field theory has close analogy to 
wave geometry. Therefore, we should also develop our geometrical theory of  
physical fields by taking wave geometry as a good model. 
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